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Quantum phase space distributions in thermofield dynamics
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† School of Physics, University of Hyderabad, Hyderabad 500 046, India
‡ Physical Research Laboratory, Navrangpura, Ahmedabad-380 009, India

Received 23 September 1998

Abstract. It is shown that the quantum phase space distributions corresponding to a density
operatorρ can be expressed, in thermofield dynamics, as overlaps between the state|ρ〉 and
‘thermal’ coherent states. The usefulness of this approach is brought out in the context of a
master equation describing a nonlinear oscillator for which exact expressions for the quantum
phase distributions for an arbitrary initial condition are derived.

1. Introduction

In quantum mechanics, the state of a system is represented by a density operator on a Hilbert
space. The state can be pure or mixed. To each density operator one can associate several
quantum phase space distributions which provide a quantum analogue of the classical phase
space distribution. Prominent among these are the Wigner function [1], theQ-function [2] and
theP -function [3] distribution each with its own special features. These three quantum phase
space distributions belong to a one-parameter family of quantum phase space distributions
introduced and investigated by Cahill and Glauber [4] and by Agarwal and Wolf [5, 6]. Over
the years, quantum phase space distributions have not only proved to be useful computational
tools by enabling one to transcribe operator equations into c-number language, but have
also led to new concepts such as non-classical states of radiation. Recent developments in
quantum state reconstruction [7], have made it possible to measure some of the quantum
phase space distributions directly [8]. They are no longer auxiliary concepts useful only for
computational purposes but have acquired a meaning in their own right. Several schemes
for direct measurements of quantum phase space distributions [9] or the positivized versions
thereof [10], as well as those in the context of atoms [11], have been proposed and are likely
to be experimentally realized in the years to come.

In this work, we examine the structure of the quantum phase space distributions from the
point of view of thermofield dynamics [12, 13]. In the conventional formulation of quantum
mechanics, pure states and mixed states are treated on an unequal footing. The formalism
of thermofield dynamics overcomes this drawback by doubling the Hilbert space. In this
formalism, density operators describing pure or mixed states are represented by a state vector
in the doubled Hilbert space. The dynamical equations in both cases also acquire the structure
of a Schr̈odinger equation even when dissipation is taken into account. The usefulness of this
formalism for practical purposes can be seen from the exact algebraic solution [14] of a class
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of master equations [15] describing coupled dissipative nonlinear oscillators. It is shown here
that, in the framework of thermofield dynamics, quantum phase space distributions can be
expressed as overlap between the state corresponding to the density operator and ‘thermal’
coherent states. To put it differently, quantum phase space distributions appear as coefficients
of expansion when the state vector corresponding to a given density operator is expanded in
terms of ‘thermal’ coherent states. That this aesthetically satisfying picture is also useful is
demonstrated by giving an exact and straightforward algebraic treatment for the evolution of the
quantum phase space distributions for the case of the master equation describing a dissipative
nonlinear oscillator.

A brief summary of this work is as follows. In section 2 we briefly review the definition
and properties of quantum phase space distributions. In section 3 we outline the formalism of
thermofield dynamics and show how the statements in section 1 translate into the thermofield
dynamics notation. Some illustrative examples of the computation of quantum phase space
distributions are presented in section 4. Finally, in section 5 we apply the machinery developed
in the preceding sections to obtain a complete picture of the time evolution of the phase space
distributions corresponding to the density operators which evolve according to some standard
master equations.

2. Quantum phase space distributions

In a series of papers Agarwal and Wolf have developed a general formulation of quantum phase
space distributions. Crucial to their formulation is the notion of a1-operator. Here we shall
confine ourselves to class of1-operators relevant for the present work. Consider the family
of operators

1(a)(α, α∗) = 1

π

∫
d2β D(β)e(a−

1
2 )|β|2−(βα∗−β∗α) a 6 1 (1)

whereD(α) = exp(αa†− α∗a). These operators are Hermitian

1(a)†(α, α∗) = 1(a)(α, α∗) (2)

and have the following properties

Tr[1(a)(α, α∗)] = πδ2(α) (3)

Tr[1(a)(α, α∗)1(1−a)(β, β∗)] = πδ2(α − β) (4)

which follow from the fact that Tr[D†(α)D(β)] = πδ2(α−β). With the help of these operators
one can associate with a density operatorρ a class of quantum phase space distributions as
follows:

8(a)
ρ (α, α

∗) = 1

π
Tr[ρ1(a)(α, α∗)]. (5)

Conversely,ρ can be expressed in terms of these in the following manner

ρ =
∫

d2α 8(a)
ρ (α, α

∗)1(1−a)(α, α∗). (6)

For a = 1, 1/2, 0, 8(a)
ρ (α, α

∗) respectively correspond to theP -function P(α, α∗), the
Wigner functionW(α, α∗) and theQ-functionQ(α, α∗). The family of quantum phase space
distributions defined in this way are related to each other as follows:

8(a−b)
ρ (α, α∗) = 1

πb

∫
d2β 8(a)

ρ (β, β
∗) exp

[
−|α − β|

2

b

]
b 6 a (7)

8(a)
ρ (α, α

∗) = exp

[
−(a − b) ∂2

∂α∂α∗

]
8(b)
ρ (α, α

∗). (8)
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It may be noted that the class of1-operators may also be expressed in the following manner

1(a)(α, α∗) = D(α)ρ(a)0 D†(α) (9)

where

ρ
(a)
0 =

1

π

∫
d2β D(β)e(a−

1
2 )|β|2. (10)

The operatorρ(a)0 can be expressed in a more familiar form as

ρ
(a)
0 = (1− e−θ ) e−θa

†a e−θ = − a

1− a (11)

and is easily seen to have the structure of a ‘thermal’ vacuum. It corresponds to a genuine
thermal vacuum only fora 6 0. The family of quantum phase space distributions can therefore
be compactly defined as follows:

8(a)
ρ (α, α

∗) = 1

π
Tr[ρD(α)ρ(a)0 D†(α)]. (12)

This observation will be crucial to later developments. It may be remarked here that, expressed
in this way, the quantum phase space distributions corresponding to a density operatorρ

are identifiable as the generating function of the number distribution of the density operator
D†(α)ρD(α):

8(a)
ρ (α, α

∗) = 1− λ
π

∑
n

λn〈n|D†(α)ρD(α)|n〉 λ = −a/(1− a). (13)

That the family of quantum phase space distributions8(a)
ρ (α, α

∗) can be expressed as in (13)
was, to our knowledge, first noticed by Moya-Cessa and Knight [16].

3. Thermofield dynamics

In thermofield dynamics (TFD) one associates with a density operatorρ acting on a Hilbert
spaceH, a state vector|ρα〉, 1/2 6 α 6 1, in the extended Hilbert spaceH ⊗ H∗ so that
averages of operators with respect toρ acquire the appearance of a scalar product:

〈A〉 = TrAρ = 〈ρ1−α|A|ρα〉. (14)

The state|ρα〉 is given by

|ρα〉 = ρ̂α|I 〉 (15)

where

ρ̂α = ρα ⊗ I (16)

and

|I 〉 =
∑
|N〉 ⊗ |N〉 ≡

∑
|N,N〉 (17)

where|N〉 constitute any complete orthonormal set inH. The state|I 〉 is simply the counterpart
of the resolution of the identity

I =
∑
|N〉〈N | (18)

in terms of a complete orthonormal set|N〉 in H. In particular, if

ρ|N〉 = pN |N〉 (19)

|ρα〉 =
∑
N

pαN |N,N〉. (20)
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(It may be noted that for any density operator the states|ρα〉, 1/2 6 α 6 1, have
a finite norm in the extended Hilbert space. This is not necessarily so with the states
|ρ1−α〉, 1/2 6 α 6 1, which include the state|I 〉. These states are to be regarded as formal
but extremely useful constructs.)

In this work we shall setα = 1. This representation of the density operator as a state vector
in the extended Hilbert space is the only useful one for discussing dissipative dynamics which
will be of interest to us later. In this representation, for any Hermitian operatorA, one has

〈A〉 = Tr(Aρ) = 〈A|ρ〉. (21)

Furthermore, for|N〉, we choose the number state|n〉 and introduce creation and annihilation
operatorsa†, ã†, a andã as follows:

a|n,m〉 = √n|n− 1, m〉 ã|n,m〉 = √m|n,m− 1〉 (22)

a†|n,m〉 =
√
n + 1|n + 1, m〉 ã†|n,m〉 =

√
m + 1|n,m + 1〉. (23)

The operatorsa anda† commute withã andã†. It is easily seen that the operatorsã andã†

respectively simulate the action ofa† anda on |n〉〈m| from the right. From the expression for
|I 〉 in terms of the number states

|I 〉 =
∑
n

|n, n〉 (24)

it follows that

a|I 〉 = ã†|I 〉 a†|I 〉 = ã|I 〉 (25)

and hence for any operator

A(a†, a) =
∑
p,q

αp,qa
†paq (26)

one has

A|I 〉 = Ã†|I 〉 (27)

whereÃ is obtained fromAby making the replacements (tilde conjugation rules)a→ ã, a†→
ã†, α→ α∗.

With the help of the formal constructs introduced above, it becomes possible to represent
any density operatorρ as a state vector in the extended Hilbert space. Thus, for instance, the
density operator for a coherent stateρ = |α〉〈α| can be represented as|ρ〉 = D(α)D̃(α∗)|0, 0〉.
Similarly for the density operator corresponding to a thermal state one has

ρ = (1− e−β) e−βa
†a → |ρ〉 = (1− f ) efK+ |0, 0〉 (28)

wheref = e−β andK+ = a†ã†. The operatorK+ together withK− = aã andK3 =
(a†a + ã†ã + 1)/2 satisfies the algebra ofsu(1, 1)

[K−,K+] = 2K3 [K3,K±] = ±K± (29)

withK0 = (a†a− ã†ã) as the Casimir operator. Use of the disentangling theorem forsu(1, 1)
[14]

exp(γ+K+ + γ3K3 + γ−K−) = exp(0+K+) exp((2 log
√
03)K3) exp(0−K−) (30)

where

0± = 2γ± sinhφ

2φ coshφ − γ3 sinhφ

√
03 =

(
2φ

2φ coshφ − γ3 sinhφ

)
(31)

with

φ2 = (γ 2
3 /4)− γ+γ− (32)
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enables us to write the state|ρ〉 in (28) as

|ρ〉 = en̄(K++K−−2K3)|0, 0〉. (33)

Turning to dynamics, consider, for example, the master equation for a nonlinear oscillator

∂

∂t
ρ = −i[H, ρ] +

1

2
γ (n̄ + 1)(2aρa†− a†aρ − ρa†a) +

1

2
γ n̄(2a†ρa − aa†ρ − ρaa†) (34)

whereH = ωa†a + χ(a†a)2. This master equation has been studied by a number of authors
[15] in the context of nonlinear propagation in a Kerr medium. Applying|I 〉 on (34) from the
right and using (25), this master equation forρ goes over to a Schrödinger-like equation for
the state|ρ〉

∂

∂t
|ρ〉 = −iĤ |ρ〉 (35)

where

−iĤ = −iω(a†a − ã†ã)− iχ [(a†a)2 − (ã†ã)2] + 1
2γ (n̄ + 1)(2aã − a†a − ã†ã)

+1
2γ n̄(2a

†ã†− aa†− ãã†). (36)

In terms of the operatorsK+,K−,K3 andK0, the operator−iĤ can be written as

−iĤ = −i(ω − χ)K0 + γ (n̄ + 1)K− + γ n̄K+ − (γ (2n̄ + 1) + 2iχK0)K3 + 1
2γ (37)

and hence the solution of (35) as

|ρ(t)〉 = exp(γ0K0 + 1
2γ t) exp(γ+K+ + γ3K3 + γ−K−)|ρ(0)〉 (38)

where

γ+ = γ n̄t γ− = γ (n̄ + 1)t γ3 = −(γ (2n̄ + 1) + 2iχK0)t

γ0 = −i(ω − χ)t. (39)

Using the disentangling theorem (30), (38) can be written as

|ρ(t)〉 = exp(γ0K0 + 1
2γ t) exp(0+K+) exp((2 log

√
03)K3) exp(0−K−)|ρ(0)〉. (40)

The fact thatK+,K− andK3 have simple actions on|n,m〉 enable one to solve (35) and hence
(34) purely algebraically. Detailed expressions forρm,n(t) and theQ-function for an arbitrary
initial condition may be found in [14].

In the context of the interaction of a single field mode with a non-thermal and phase
insensitive environment, Agarwal [18] has considered the following master equation:

∂

∂t
ρ = κ

[
aρa† + a†ρa −

(
a†a +

1

2

)
ρ − ρ

(
a†a +

1

2

)]
. (41)

In thermofield dynamics notation this translates into

∂

∂t
|ρ〉 = κ[K+ +K− − 2K3]|ρ〉 (42)

so that

|ρ(t)〉 = exp(κt (K+ +K− − 2K3))|ρ(0)〉. (43)

To conclude this section, we have seen how various density operators are represented in
thermofield dynamics. We have also seen how certain master equations could be solved purely
algebraically using the thermofield dynamics formalism. In the following section we shall
show how the quantum phase space distributions are to be calculated in thermofield dynamics
and how the time evolution of the quantum phase space distributions corresponding to the
master equations considered here can be exactly determined.
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4. Quantum phase space distributions in thermofield dynamics

From (12) and (21) it follows that

8(a)
ρ (α, α

∗) = 1

π
〈α, α∗; a|ρ〉 (44)

where

|α, α∗; a〉 = exp[−a[K+ +K− − 2Kz]] |α, α∗〉 (45)

= 1

1− aD(α)D̃(α
∗) exp

[
− a

1− aK+

]
|0, 0〉. (46)

The quantum phase space distributions can thus be written as overlaps between the state|ρ〉
and ‘thermal’ coherent states. We now consider some examples to illustrate the usefulness of
this formula for computation of quantum phase space distributions for some standard density
operators.

(i) Coherent states.Consider the density operatorρ = |α0〉〈α0| for a coherent state. The
corresponding state|ρ〉 is |α0, α

∗
0〉. Substituting this in (44) we obtain

8(a)
ρ (α, α

∗) = 1

(1− a)π 〈0, 0| exp

[
− a

1− aK−
]
D(−α)D̃(−α∗)|α0, α

∗
0〉

= 1

(1− a)π 〈0, 0| exp

[
− a

1− aK−
]
|α0 − α, α∗0 − α∗〉

= 1

(1− a)π exp

[
− a

1− a |α − α0|2
]
〈0, 0|α0 − α, α∗0 − α∗〉

= 1

(1− a)π exp

[
− 1

1− a |α − α0|2
]
. (47)

In the limita→ 1 one obtains the familiar expression for theP -function for the coherent state

8(1)
ρ (α, α

∗) = 1

π
〈α, α∗; 1|ρ〉 = δ2(α − α0). (48)

Now, since

〈α, α∗; a|α0, α
∗
0; b〉 = 〈α, α∗; a + b|α0, α

∗
0〉 (49)

it follows that

〈α, α∗; a|α0, α
∗
0; b〉 =


1

(1− (a + b))
exp

[
− 1

1− (a + b)
|α − α0|2

]
if a + b < 1

πδ2(α − α0) if a + b = 1.

(50)

This relation will be used later.

(ii) Squeezed thermal coherent state [19].The density operator for a squeezed thermal coherent
state is

ρ = (1− e−β)D(α0)S(z) exp(−βa†a)S†(z)D†(α0). (51)

The corresponding|ρ〉 is given by

|ρ〉 = (1− f )D(α0)D̃(α
∗
0)S(z)S̃(z

∗) exp[fK+]|0, 0〉 f = e−β. (52)

Substituting this in (44) we obtain

8(a)
ρ (α, α

∗) = (1− f )(1− λ)
π

〈0, 0| eλK−D†(α)D̃†(α∗)D(α0)D̃(α
∗
0)S(z)S̃(z

∗) efK+ |0, 0〉.
(53)
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By inserting the resolution of the identity in terms of two mode coherent states after exp(λK−)
and before exp(fK+), writing out the action of these operators on the coherent states and
carrying out two of the four integrals that occur, we obtain

8(a)
ρ (α, α

∗) = (1− f )(1− λ)
π

∫
d2γ

π

∫
d2δ

π
e−

1
2 (1−λ2)|γ |2+ 1

2 (1−λ)(γ α∗−γ ∗α)− 1
2 (1−f 2)|δ|2

×〈γ + α − α0, λγ
∗ + α∗ − α∗0|S(z)S̃(z∗)|δ, f δ∗〉. (54)

Finally, on using the known expression for the matrix element of the squeezing operatorS(z)

between coherent states and carrying out the Gaussian integrals, we obtain

8(a)
ρ (α, α

∗)= (1− f )(1− λ) sechr

π

√
[(1− λf )2 − (λ− f )2 tanh2 r]

exp

[
− (1− f )(1− λ)

[(1− λf )2 − (λ− f )2 tanh2 r]
X

]
(55)

whereλ = −a/(1− a) z = r eiθ and

X = [(1− λf )− (λ− f ) tanh2 r]|α − α0|2
− 1

2(1 +f )(1− λ) tanhr[(α − α0)
2 e−iθ + (α∗ − α∗0)2 eiθ ]. (56)

In the limit of no squeezing, one recovers the familiar expressions for the quantum phase space
distributions for a thermal coherent state

8(a)
ρ (α, α

∗) = (1− f )
(1− a(1− f ))π exp

[
(1− f )

1− a(1− f ) |α − α0|2
]
. (57)

With this preparation, we are in a position to translate all the relations in section 2 into the
language of thermofield dynamics.

An arbitrary state|ρ〉 can be in terms of|α, α∗; a〉 as follows:

|ρ〉 =
∫

d2β 8(a)
ρ (β, β

∗)|β, β∗; 1− a〉. (58)

This relation is the analogue of (6). The quantum phase space distributions thus acquire a new
meaning as coefficients of expansion when|ρ〉 is expressed in terms of the ‘thermal’ coherent
states|α, α∗; 1− a〉.

Taking the overlap of|ρ〉 as given in (58) with|α, α∗; a − b〉 and using (49) and (50) one
obtains the relation (8) between quantum phase space distributions.

The relation (8) between the quantum phase space distributions comes about in the
following way. The coherent state|α, α∗〉 has the following structure:

|α, α∗〉 = exp(α(a†− ã)− α∗(a − ã†))|0, 0〉. (59)

The operators(a†− ã) and(a− ã†)) commute with each other. Now, from (59) it follows that

(a†− ã)|α, α∗〉 = ∂

∂α
|α, α∗〉 (a − ã†))|α, α∗〉 = ∂

∂α∗
|α, α∗〉 (60)

and hence

[K+ +K− − 2K3]|α, α∗〉 = −(a†− ã)(a − ã†))|α, α∗〉 = − ∂2

∂α∂α∗
|α, α∗〉. (61)

The relation (8) therefore is a simple consequence of (44) and of the realization of [K+ +K−−
2K3] as a differential operator while acting on|α, α∗〉.

Finally, the representation (58) also leads to the relation

Tr(Aρ) = π
∫

d2β 8(a)
ρ (β, β

∗)8(1−a)
A (β, β∗). (62)
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5. Time evolution of quantum phase space distributions

In section 3 we discussed some standard master equations and showed how they could be
transcribed as Schrödinger-like equations. In the cases considered we showed that the solution
of the Schr̈odinger-like equations thus obtained can be written as (38) with appropriate
identification of the coefficients that occur there. In this section we wish to examine how
transcription enables us to obtain a complete picture of the corresponding phase space
distributions subject to given initial conditions. Two initial conditions are considered.

(i) Evolution from an initial coherent state|ρ(0)〉 = |α0, α
∗
0〉. For this initial condition, it

follows from (38), (44) and (45) that

8
(a)

ρ(t)(α, α
∗) = 1

π
〈α, α∗; a| e(γ0K0+ 1

2γ t) e(0+K+) e((2 log
√
03)K3) e(0−K−)|α0, α

∗
0〉

= 1

π
e

1
2γ t 〈α, α∗| e(−a(K++K−−2K3) e(0+K+) e((2 log

√
03)K3) e(0−K−)α0e−iωt , α∗0 eiωt 〉

= 1

π
e

1
2γ t 〈α, α∗| e(λK+) e((2 log(1−λ)K3) e(λK−) e(0+K+) e((2 log

√
03)K3) e(0−K−)|

×α0 e−iωt , α∗0 eiωt 〉 (63)

whereλ = −a/(1− a). Here in the last step we have used the disentangling theorem (30).
Repeated use of the commutation relations and the disentangling theorem enable us to bring
the right-hand side of (63) into the following standard form

8
(a)

ρ(t)(α, α
∗) = 1

π
〈α, α∗| e(0′+K+) e((2 log

√
0′3)K3) e(0

′
−K−)|α0 e−iωt , α∗0 eiωt 〉 (64)

where

0′+ = 1− [(1− λ)(1− 0+)]

[1− λ0−]

0′− = 1− [(1− 0−)(1− λ0+)− λ03]

[1− λ0+]√
0′3 =

[(1− λ)√03]

[1− λ0+]
. (65)

In this form the right-hand side of (64) can easily be evaluated. In the case of the nonlinear
oscillator,0± and03 are functions ofK0 and (64) can be written as

8
(a)

ρ(t)(α, α
∗) = 1

π

∑
m,n

1

m!n!
(α∗α0 e−iωt )m(αα∗0 eiωt )n(

√
03)

m+n+1 e(0
′
+−1)|α|2 e(0

′
−−1)|α0|2

(66)

where it is understood that theK0 in the expressions for0± and03 is replaced by(m− n).
Whenχ = 0, i.e. in the case of a linear oscillator,0± and03 are constants and (66)

simplifies to

8
(a)

ρ(t)(α, α
∗) =

√
0′3
π

e
1
2γ t e(0

′
+−1)|α|2 e(0

′
−−1)|α0|2 e

√
0′3(α

∗α0e−iωt+αα∗0 eiωt ). (67)

(ii) Evolution from a given initial quantum phase space distribution.An arbitrary initial state
can be expanded as

|ρ(0)〉 =
∫

d2α08
(a)

ρ(0)(α0, α
∗
0)|α0, α

∗
0; 1− a〉. (68)
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For the time evolution of the quantum phase space distributions one therefore obtains

8
(a)

ρ(t)(α, α
∗) =

∫
d2α0K

(a)(α, α∗, t;α0, α
∗
0, 0)8

(a)

ρ(0)(α0, α
∗
0) (69)

where

K(a)(α, α∗, t;α0, α
∗
0, 0) =

1

π
〈α, α∗; a| e(γ0K0+ 1

2γ t) e(γ+K++γ3K3+γ−K−)|α0, α
∗
0; (1− a)〉. (70)

Using the same manipulations as above, one finds that

K(a)(α, α∗, t;α0, α
∗
0, 0) =

eγ t/2

π
〈α, α∗| e(0′′+K+) e((2 log

√
0′′3)K3) e(0

′′
−K−)|α0 e−iωt , α∗0 eiωt 〉

(71)

where

0′′+ = 1− (1− λ) [(1− 0+)(λ− 0−)− 03]

[(λ− 0−)(1− λ0+)− λ03]

0′′− = 1 + (1− λ) [(1− 0−)(1− λ0+)− λ03]

[(λ− 0−)(1− λ0+)− λ03]√
0′′3 = −

(1− λ)2√03

[(λ− 0−)(1− λ0+)− λ03]
. (72)

The right-hand side of (71) can be cast into the form (67) for the case of the linear oscillator
and in the form (66) in the case of the nonlinear oscillator.

Finally, for the master equation (41), owing to its structure, one has the following
interesting result

8
(a)

ρ(t)(α, α
∗) = 8(a−κt)

ρ(0) (α, α∗) (73)

which says that8(a)

ρ(t)(α, α
∗) sweeps through the entire family of the quantum phase space

distributions8(b)

ρ(0)(α, α
∗), b 6 a, associated with the initial density operator.

6. Conclusion

The observation that the family of quantum phase space distributions considered by Agarwal
and Wolf have the structure as in (12) and the recognition that this form, in thermofield
dynamics, translates into an overlap as in (44) constitute the key results of this work. These
results, in turn, enable us not only to understand various relations between quantum phase
space distribution in an aesthetically satisfying manner, but also prove to be extremely useful
for computational purposes. The latter aspect of the formalism developed here is demonstrated
by using it to obtain a full time-dependent solution for a family of quantum phase space
distributions for the master equation describing a nonlinear dissipative oscillator. We hope that
the results presented here will be useful in the context of wavepacket dynamics in nonlinear
systems in the presence of dissipation, a subject which has attracted considerable attention in
recent years.
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